DIY csCNC – 1 (Hardwares)

As mention is DIY Drill Press post, I started building a cheap&small CNC (aka) csCNC. My requirements are :

  • a small , table top CNC
  • Must be simple to build (No need special hardware and tools)
  • Must be cheap (My pocket is very limited)
  • capability of milling PCB, plastic, acrylic and wood.

After learning DIY build logs from internet, I chose Mantis 9.1 CNC techniques.

http://makeyourbot.wikidot.com/mantis9-1

  • I like building technique, its simple, fast and not required special tools
  • it is small and cheap but accuracy and performance is good

But, the parts and tools in my hand is very limited. I have only parts from old printers such as linear rods, rails , stepper motors and some hardware like nuts and bolts. So, I customized the design slightly depend on my requirements and handy parts.

I started the building since last April Thingyan holidays.

1# Designed the draft ,

2# Cut the materials for X,Y assemblies. I used plastic board for assemblies and Bamboo kitchen plate for base (my fav, it is heavy, flat and rigid).

DIY-csCNC_hardware (2) DIY-csCNC_hardware (3)

3# Drilled the base plates. I used sandwich drilling technique and use 90 degree L shape as drill guide. This method worked well. Drilled easily vertical and parallel holes for linear rails.

DIY-csCNC_hardware (4) DIY-csCNC_hardware (5) DIY-csCNC_hardware (6)

4# Used an old school technique, a paper and pencil to make a shape of motor mount. Marked and drilled the base plate for motor mount.

DIY-csCNC_hardware (8) DIY-csCNC_hardware (9)

 

5# Test assembled X table.

DIY-csCNC_hardware (10)

6# Cut the moving bed and glued with linear barring. Used small amount of super glue for keeping parts temporary. (Don’t use much super glue, it will prevent later use of AB glue).

DIY-csCNC_hardware (11) DIY-csCNC_hardware (12)

7# prepared Tap screw for linear slide nut. To prevent backlash, I used tapping with the same lead screw. Mantis 9.1 design used fixed nut with glue. For easy maintenance and replacement, I used an aluminium bracket to fixed the lead nut.

DIY-csCNC_hardware (13) DIY-csCNC_hardware (14) DIY-csCNC_hardware (16) DIY-csCNC_hardware (15)

DIY-csCNC_hardware (16)

8# Installed the lead screw and X motor. A small rubber pipe from Car tier inflation pump is used as coupler. Installed L shape brackets for fixing base plates.

DIY-csCNC_hardware (17) DIY-csCNC_hardware (18) DIY-csCNC_hardware (19)

 

9# Tested alignment of rails and moving bed by rotating the lead screw by hand. After this, all linear barrings and moving lead screw nut with AB glue.

DIY-csCNC_hardware (24) DIY-csCNC_hardware (25) DIY-csCNC_hardware (26)

10# Cut and prepared for Y axis base. Use the same technique for X axis. Y axis , lead screw, linear barrings, nut and motor mount are finished.

DIY-csCNC_hardware (27) DIY-csCNC_hardware (28) DIY-csCNC_hardware (29) DIY-csCNC_hardware (31) DIY-csCNC_hardware (32)

 

11# Designed and cut the fixed mount for Z axis.

DIY-csCNC_hardware (33) DIY-csCNC_hardware (34)

 

12# Finished for Z axis motor mount and lead screw coupling.

DIY-csCNC_hardware (38)

 

 

 

 

 

DIY-csCNC_hardware (35) DIY-csCNC_hardware (36)

13# Finished spindle mount and moving rails parts.

DIY-csCNC_hardware (37)

DIY-csCNC_hardware (39)

14# Fixed everything except spindle mount.

DIY-csCNC_hardware (40)

Next parts is electronics, controllers and motor parts. Stayed tuned.

By Oakkar7

okelectronic.wordpress.com

 

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s